Isogenies for point counting on genus two hyperelliptic curves with maximal real multiplication

Abstract : Schoof's classic algorithm allows point-counting for elliptic curves over finite fields in polynomial time. This algorithm was subsequently improved by Atkin, using factorizations of modular polynomials, and by Elkies, using a theory of explicit isogenies. Moving to Jacobians of genus-2 curves, the current state of the art for point counting is a generalization of Schoof's algorithm. While we are currently missing the tools we need to generalize Elkies' methods to genus 2, recently Martindale and Milio have computed analogues of modular polynomials for genus-2 curves whose Jacobians have real multiplication by maximal orders of small discriminant. In this article, we prove Atkin-style results for genus-2 Jacobians with real multiplication by maximal orders, with a view to using these new modular polynomials to improve the practicality of point-counting algorithms for these curves.
Type de document :
Communication dans un congrès
E. W. Howe; K. E. Lauter; J. L. Walker. Algebraic Geometry for Coding Theory and Cryptography, Feb 2016, Los Angeles, United States. Springer, Association for Women in Mathematics Series, 9, pp.63-94, 2017, Algebraic Geometry for Coding Theory and Cryptography. 〈http://www.ipam.ucla.edu/programs/workshops/algebraic-geometry-for-coding-theory-and-cryptography/〉. 〈10.1007/978-3-319-63931-4〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01421031
Contributeur : Aurore Guillevic <>
Soumis le : mardi 7 novembre 2017 - 18:49:49
Dernière modification le : mardi 19 juin 2018 - 11:12:07
Document(s) archivé(s) le : jeudi 8 février 2018 - 15:02:06

Fichier

Isogenies_point_counting_genus...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Sean Ballentine, Aurore Guillevic, Elisa Lorenzo García, Chloe Martindale, Maike Massierer, et al.. Isogenies for point counting on genus two hyperelliptic curves with maximal real multiplication. E. W. Howe; K. E. Lauter; J. L. Walker. Algebraic Geometry for Coding Theory and Cryptography, Feb 2016, Los Angeles, United States. Springer, Association for Women in Mathematics Series, 9, pp.63-94, 2017, Algebraic Geometry for Coding Theory and Cryptography. 〈http://www.ipam.ucla.edu/programs/workshops/algebraic-geometry-for-coding-theory-and-cryptography/〉. 〈10.1007/978-3-319-63931-4〉. 〈hal-01421031v3〉

Partager

Métriques

Consultations de la notice

361

Téléchargements de fichiers

32