Stable Discontinuous Galerkin FEM Without Penalty Parameters

Abstract : We propose a modified local discontinuous Galerkin (LDG) method for second–order elliptic problems that does not require extrinsic penalization to ensure stability. Stability is instead achieved by showing a discrete Poincaré–Friedrichs inequality for the discrete gradient that employs a lifting of the jumps with one polynomial degree higher than the scalar approximation space. Our analysis covers rather general simplicial meshes with the possibility of hanging nodes.
Type de document :
Communication dans un congrès
B. Karasözen; M. Manguoğlu; M. Tezer-Sezgin; S. Göktepe; O. Uğur. Numerical Mathematics and Advanced Applications ENUMATH 2015, Sep 2015, Ankara, Turkey. Springer International Publishing, pp.XIV, 643, 2016, Lecture Notes in Computational Science and Engineering. 〈10.1007/978-3-319-39929-4_17〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01428664
Contributeur : Iain Smears <>
Soumis le : vendredi 6 janvier 2017 - 14:46:56
Dernière modification le : samedi 7 janvier 2017 - 01:03:21
Document(s) archivé(s) le : vendredi 7 avril 2017 - 14:20:27

Fichier

dg_without_penalty.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Lorenz John, Michael Neilan, Iain Smears. Stable Discontinuous Galerkin FEM Without Penalty Parameters. B. Karasözen; M. Manguoğlu; M. Tezer-Sezgin; S. Göktepe; O. Uğur. Numerical Mathematics and Advanced Applications ENUMATH 2015, Sep 2015, Ankara, Turkey. Springer International Publishing, pp.XIV, 643, 2016, Lecture Notes in Computational Science and Engineering. 〈10.1007/978-3-319-39929-4_17〉. 〈hal-01428664〉

Partager

Métriques

Consultations de la notice

110

Téléchargements de fichiers

19