Online Optimal Active Sensing Control

Paolo Salaris 1 Riccardo Spica 1 Paolo Robuffo Giordano 1 Patrick Rives 1
1 Lagadic - Visual servoing in robotics, computer vision, and augmented reality
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Rennes – Bretagne Atlantique , IRISA_D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : This paper deals with the problem of active sensing control for nonlinear differentially flat systems. The objective is to improve the estimation accuracy of an observer by determining the inputs of the system that maximise the amount of information gathered by the outputs over a fixed time horizon. In particular, we use the Observability Gramian (OG) to quantify the richness of the acquired information. First, we define a trajectory for the flat outputs of the system by using B-Spline curves. Then, we exploit an online gradient descent strategy to move the control points of the B-Spline in order to actively maximise the smallest eigenvalue of the OG over the whole planning horizon. While the system travels along its planned (optimized) trajectory, an Extended Kalman Filter (EKF) is used to estimate the system state. In order to keep memory of the past acquired sensory data for online re-planning, the OG is also computed on the past estimated state trajectories. This is then used for an online replanning of the optimal trajectory during the robot motion which is continuously refined by exploiting the state estimation obtained by the EKF. In order to show the effectiveness of our method we consider a simple but significant case of a planar robot with a single range measurement. The simulation results show that, along the optimal path, the EKF converges faster and provides a more accurate estimate than along other possible (non-optimal) paths.
Type de document :
Communication dans un congrès
International Conference on Robotics and Automation (ICRA), May 2017, Singapore, Singapore
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01472608
Contributeur : Paolo Salaris <>
Soumis le : mercredi 7 juin 2017 - 15:08:55
Dernière modification le : jeudi 15 novembre 2018 - 11:59:00
Document(s) archivé(s) le : vendredi 8 septembre 2017 - 13:04:28

Fichier

ICRA2017_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01472608, version 2

Citation

Paolo Salaris, Riccardo Spica, Paolo Robuffo Giordano, Patrick Rives. Online Optimal Active Sensing Control. International Conference on Robotics and Automation (ICRA), May 2017, Singapore, Singapore. 〈hal-01472608v2〉

Partager

Métriques

Consultations de la notice

460

Téléchargements de fichiers

191