A Family of Crouzeix-Raviart Finite Elements in 3D

Patrick Ciarlet 1 Charles Dunkl 2 Stefan Sauter 3
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In this paper we will develop a family of non-conforming " Crouzeix-Raviart " type finite elements in three dimensions. They consist of local polynomials of maximal degree p ∈ N on simplicial finite element meshes while certain jump conditions are imposed across adjacent simplices. We will prove optimal a priori estimates for these finite elements. The characterization of this space via jump conditions is implicit and the derivation of a local basis requires some deeper theoretical tools from orthogonal polynomials on triangles and their representation. We will derive these tools for this purpose. These results allow us to give explicit representations of the local basis functions. Finally we will analyze the linear independence of these sets of functions and discuss the question whether they span the whole non-conforming space.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.inria.fr/hal-01488172
Contributeur : Patrick Ciarlet <>
Soumis le : lundi 13 mars 2017 - 14:04:42
Dernière modification le : mardi 17 avril 2018 - 09:04:29
Document(s) archivé(s) le : mercredi 14 juin 2017 - 13:31:26

Fichier

CiDS17_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01488172, version 1

Citation

Patrick Ciarlet, Charles Dunkl, Stefan Sauter. A Family of Crouzeix-Raviart Finite Elements in 3D. 2017. 〈hal-01488172〉

Partager

Métriques

Consultations de la notice

257

Téléchargements de fichiers

70