Equilibrated flux a posteriori error estimates in $L^2(H^1)$-norms for high-order discretizations of parabolic problems

Abstract : We consider the a posteriori error analysis of fully discrete approximations of parabolic problems based on conforming $hp$-finite element methods in space and an arbitrary order discontinuous Galerkin method in time. Using an equilibrated flux reconstruction, we present a posteriori error estimates yielding guaranteed upper bounds on the $L^2(H^1)$-norm of the error, without unknown constants and without restrictions on the spatial and temporal meshes. It is known from the literature that the analysis of the efficiency of the estimators represents a significant challenge for $L^2(H^1)$-norm estimates. Here we show that the estimator is bounded by the $L^2(H^1)$-norm of the error plus the temporal jumps under the one-sided parabolic condition $h^2 \lesssim \tau$. This result improves on earlier works that required stronger two-sided hypotheses such as $h \simeq \tau$ or $h^2\simeq \tau$; instead our result now encompasses the practically relevant case for computations and allows for locally refined spatial meshes. The constants in our bounds are robust with respect to the mesh and time-step sizes, the spatial polynomial degrees, and also with respect to refinement and coarsening between time-steps, thereby removing any transition condition.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Contributeur : Iain Smears <>
Soumis le : mardi 14 mars 2017 - 15:31:55
Dernière modification le : mardi 17 avril 2018 - 09:04:29
Document(s) archivé(s) le : jeudi 15 juin 2017 - 14:30:22


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01489721, version 1


Alexandre Ern, Iain Smears, Martin Vohralík. Equilibrated flux a posteriori error estimates in $L^2(H^1)$-norms for high-order discretizations of parabolic problems. 2017. 〈hal-01489721〉



Consultations de la notice


Téléchargements de fichiers