Weighted Approach to Projective Clustering

Abstract : k-means is the basic method applied in many data clustering problems. As is known, its natural modification can be applied to projection clustering by changing the cost function from the squared-distance from the point to the squared distance from the affine subspace. However, to apply thus approach we need the beforehand knowledge of the dimension.In this paper we show how to modify this approach to allow greater flexibility by using the weights over respective range of subspaces.
Type de document :
Communication dans un congrès
Khalid Saeed; Rituparna Chaki; Agostino Cortesi; Sławomir Wierzchoń. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. Springer, Lecture Notes in Computer Science, LNCS-8104, pp.367-378, 2013, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-40925-7_34〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01496083
Contributeur : Hal Ifip <>
Soumis le : lundi 27 mars 2017 - 11:01:44
Dernière modification le : jeudi 4 octobre 2018 - 22:12:02
Document(s) archivé(s) le : mercredi 28 juin 2017 - 13:06:41

Fichier

978-3-642-40925-7_34_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Przemysław Spurek, Jacek Tabor, Krzysztof Misztal. Weighted Approach to Projective Clustering. Khalid Saeed; Rituparna Chaki; Agostino Cortesi; Sławomir Wierzchoń. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. Springer, Lecture Notes in Computer Science, LNCS-8104, pp.367-378, 2013, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-40925-7_34〉. 〈hal-01496083〉

Partager

Métriques

Consultations de la notice

30

Téléchargements de fichiers

19