Construction of Sequential Classifier Using Confusion Matrix

Abstract : This paper presents the problem of building the decision scheme in the multistage pattern recognition task. This task can be presented using a decision tree. This decision tree is built in the learning phase of classification. This paper proposes a split criterion based on the analysis of the confusion matrix. Specifically, we propose the division associated with an incorrect classification. The obtained results were verified on the data sets form UCI Machine Learning Repository and one real-life data set of the computer-aided medical diagnosis.
Type de document :
Communication dans un congrès
Khalid Saeed; Rituparna Chaki; Agostino Cortesi; Sławomir Wierzchoń. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. Springer, Lecture Notes in Computer Science, LNCS-8104, pp.401-407, 2013, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-40925-7_37〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01496085
Contributeur : Hal Ifip <>
Soumis le : lundi 27 mars 2017 - 11:01:49
Dernière modification le : mardi 28 mars 2017 - 01:07:11
Document(s) archivé(s) le : mercredi 28 juin 2017 - 13:17:19

Fichier

978-3-642-40925-7_37_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Robert Burduk, Pawel Trajdos. Construction of Sequential Classifier Using Confusion Matrix. Khalid Saeed; Rituparna Chaki; Agostino Cortesi; Sławomir Wierzchoń. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. Springer, Lecture Notes in Computer Science, LNCS-8104, pp.401-407, 2013, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-40925-7_37〉. 〈hal-01496085〉

Partager

Métriques

Consultations de la notice

150

Téléchargements de fichiers

68