Versatile and scalable cosparse methods for physics-driven inverse problems

Abstract : Solving an underdetermined inverse problem implies the use of a regularization hypothesis. Among possible regularizers, the so-called sparsity hypothesis, described as a synthesis model of the signal of interest from a low number of elementary signals taken in a dictionary, is now widely used. In many inverse problems of this kind, it happens that an alternative model, the cosparsity hypothesis (stating that the result of some linear analysis of the signal is sparse), offers advantageous properties over the classical synthesis model. A particular advantage is its ability to intrinsically integrate physical knowledge about the observed phenomenon, which arises naturally in the remote sensing contexts through some underlying partial differential equation. In this chapter, we illustrate on two running examples (acoustic source localization and brain source imaging) the power of a generic cosparse approach to a wide range of problems governed by physical laws, how it can be adapted to each of these problems in a very versatile fashion, and how it can scale up to large volumes of data typically arising in applications.
Type de document :
Chapitre d'ouvrage
Holger Boche; Giuseppe Caire; Robert Calderbank; Maximilian März; Gitta Kutyniok; Rudolf Mathar. Compressed Sensing and its Applications -- Second International MATHEON Conference 2015, Birkhaüser Basel, 2018, Series: Applied and Numerical Harmonic Analysis, 978-3-319-69802-1. 〈10.1007/978-3-319-69802-1_10〉
Liste complète des métadonnées

Littérature citée [83 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01496767
Contributeur : Rémi Gribonval <>
Soumis le : dimanche 16 juillet 2017 - 08:14:54
Dernière modification le : mardi 18 septembre 2018 - 01:12:35
Document(s) archivé(s) le : vendredi 26 janvier 2018 - 22:18:39

Fichier

chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Collections

Citation

Srđan Kitić, Siouar Bensaid, Laurent Albera, Nancy Bertin, Rémi Gribonval. Versatile and scalable cosparse methods for physics-driven inverse problems. Holger Boche; Giuseppe Caire; Robert Calderbank; Maximilian März; Gitta Kutyniok; Rudolf Mathar. Compressed Sensing and its Applications -- Second International MATHEON Conference 2015, Birkhaüser Basel, 2018, Series: Applied and Numerical Harmonic Analysis, 978-3-319-69802-1. 〈10.1007/978-3-319-69802-1_10〉. 〈hal-01496767v2〉

Partager

Métriques

Consultations de la notice

1022

Téléchargements de fichiers

118