Solving chance constrained optimal control problems in aerospace via Kernel Density Estimation - Archive ouverte HAL Access content directly
Journal Articles Optimal Control Applications and Methods Year : 2018

Solving chance constrained optimal control problems in aerospace via Kernel Density Estimation

(1, 2) , (3) , (4) , (5, 6, 7) , (4)
1
2
3
4
5
6
7

Abstract

The goal of this paper is to show how non-parametric statistics can be used to solve some chance constrained optimization and optimal control problems. We use the Kernel Density Estimation method to approximate the probability density function of a random variable with unknown distribution , from a relatively small sample. We then show how this technique can be applied and implemented for a class of problems including the God-dard problem and the trajectory optimization of an Ariane 5-like launcher.
Fichier principal
Vignette du fichier
paper_kde.pdf (674.23 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01507063 , version 1 (12-04-2017)

Identifiers

Cite

Jean-Baptiste Caillau, Max Cerf, Achille Sassi, Emmanuel Trélat, Hasnaa Zidani. Solving chance constrained optimal control problems in aerospace via Kernel Density Estimation. Optimal Control Applications and Methods, 2018, 39 (5), pp.1833-1858. ⟨10.1002/oca.2445⟩. ⟨hal-01507063⟩
670 View
884 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More