A relaxed characterization of ISS for periodic systems with multiple invariant sets

Denis Efimov 1 Johannes Schiffer 2 Nikita Barabanov 3 Romeo Ortega 4
1 NON-A - Non-Asymptotic estimation for online systems
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : A necessary and sufficient criterion to establish input-to-state stability (ISS) of nonlinear dynamical systems, the dynamics of which are periodic with respect to certain state variables and which possess multiple invariant solutions (equilibria, limit cycles, etc.), is provided. Unlike standard Lyapunov approaches, the condition is relaxed and formulated via a sign-indefinite function with sign-definite derivative, and by taking the system's periodicity explicitly into account. The new result is established by using the framework of cell structure and it complements the ISS theory of multistable dynamics for periodic systems. The efficiency of the proposed approach is illustrated via the global analysis of a nonlinear pendulum with constant persistent input.
Type de document :
Article dans une revue
European Journal of Control, Lavoisier, 2017, pp.1-7
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

Contributeur : Denis Efimov <>
Soumis le : mardi 18 avril 2017 - 12:10:24
Dernière modification le : jeudi 11 janvier 2018 - 06:27:32
Document(s) archivé(s) le : mercredi 19 juillet 2017 - 15:25:02


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01509647, version 1


Denis Efimov, Johannes Schiffer, Nikita Barabanov, Romeo Ortega. A relaxed characterization of ISS for periodic systems with multiple invariant sets. European Journal of Control, Lavoisier, 2017, pp.1-7. 〈hal-01509647〉



Consultations de la notice


Téléchargements de fichiers