Improved method for finding optimal formulae for bilinear maps in a finite field

Svyatoslav Covanov 1
1 CARAMBA - Cryptology, arithmetic : algebraic methods for better algorithms
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : In 2012, Barbulescu, Detrey, Estibals and Zimmermann proposed a new framework to exhaustively search for optimal formulae for evaluating bilinear maps, such as Strassen or Karatsuba formulae. The main contribution of this work is a new criterion to aggressively prune useless branches in the exhaustive search, thus leading to the computation of new optimal formulae, in particular for the short product modulo X 5 and the circulant product modulo (X 5 − 1). Moreover , we are able to prove that there is essentially only one optimal decomposition of the product of 3 × 2 by 2 × 3 matrices up to the action of some group of automorphisms.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger
Contributeur : Svyatoslav Covanov <>
Soumis le : mardi 28 novembre 2017 - 11:15:20
Dernière modification le : mardi 18 décembre 2018 - 16:18:26


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01519408, version 2
  • ARXIV : 1705.07728



Svyatoslav Covanov. Improved method for finding optimal formulae for bilinear maps in a finite field. 2017. 〈hal-01519408v2〉



Consultations de la notice


Téléchargements de fichiers