A Classical Sequent Calculus with Dependent Types (Extended Version)

Étienne Miquey 1, 2
1 PI.R2 - Design, study and implementation of languages for proofs and programs
Inria de Paris, CNRS - Centre National de la Recherche Scientifique, UPD7 - Université Paris Diderot - Paris 7, PPS - Preuves, Programmes et Systèmes
Abstract : Dependent types are a key feature of the proof assistants based on the Curry-Howard isomorphism. It is well-known that this correspondence can be extended to classical logic by enriching the language of proofs with control operators. However, they are known to misbehave in the presence of dependent types, unless dependencies are restricted to values. Moreover, while sequent calculi are naturally tailored to smoothly support continuation-passing style interpretations, there is no such presentation of a language with dependent types. The main achievement of this paper is to give a sequent calculus presentation of a call-by-value language with a control operator and dependent types, and to justify its soundness through a continuation-passing style translation. We start from the call-by-value version of the λµμ̃-calculus. We design a minimal language with a value restriction and a type system that includes a list of explicit dependencies to maintains type safety. We then show how to relax the value restriction and introduce delimited continuations to directly prove the consistency by means of a continuation-passing-style translation. Finally, we relate our calculus to a similar system by Lepigre, and present a methodology to transfer properties from this system to our own.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [37 references]  Display  Hide  Download

Contributor : Étienne Miquey <>
Submitted on : Friday, December 1, 2017 - 4:26:05 PM
Last modification on : Friday, February 22, 2019 - 11:16:45 AM


Files produced by the author(s)


  • HAL Id : hal-01519929, version 2



Étienne Miquey. A Classical Sequent Calculus with Dependent Types (Extended Version). 2017. ⟨hal-01519929v2⟩



Record views


Files downloads