An integrate-and-fire model to generate spike trains with long-range dependence

Abstract : Long-range dependence (LRD) has been observed in a variety of phenomena in nature, and for several years also in the spiking activity of neurons. Often, this is interpreted as originating from a non-Markovian system. Here we show that a purely Markovian integrate-and-fire (IF) model, with a noisy slow adaptation term, can generate interspike intervals (ISIs) that appear as having LRD. However a proper analysis shows that this is not the case asymptotically. For comparison, we also consider a new model of individual IF neuron with fractional (non-Markovian) noise. The correlations of its spike trains are studied and proven to have LRD, unlike classical IF models. On the other hand, to correctly measure long-range dependence, it is usually necessary to know if the data are stationary. Thus, a methodology to evaluate stationarity of the ISIs is presented and applied to the various IF models. We explain that Markovian IF models may seem to have LRD because of non-stationarities.
Type de document :
Article dans une revue
Journal of Computational Neuroscience, Springer Verlag, inPress, 〈10.1007/s10827-018-0680-1〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01521891
Contributeur : Etienne Tanré <>
Soumis le : mercredi 28 mars 2018 - 09:03:52
Dernière modification le : jeudi 5 avril 2018 - 12:30:26
Document(s) archivé(s) le : jeudi 13 septembre 2018 - 09:38:35

Fichier

IF_LRD_revision_2018_02_09.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Alexandre Richard, Patricio Orio, Etienne Tanré. An integrate-and-fire model to generate spike trains with long-range dependence. Journal of Computational Neuroscience, Springer Verlag, inPress, 〈10.1007/s10827-018-0680-1〉. 〈hal-01521891v2〉

Partager

Métriques

Consultations de la notice

195

Téléchargements de fichiers

53