ProxiLens: Interactive Exploration of High-Dimensional Data using Projections - Archive ouverte HAL Access content directly
Conference Papers Year : 2013

ProxiLens: Interactive Exploration of High-Dimensional Data using Projections

(1, 2) , (1) , (2)
1
2

Abstract

As dimensionality increases, analysts are faced with difficult problems to make sense of their data. In exploratory data analysis, multidimensional scaling projections can help analyst to discover patterns by identifying outliers and enabling visual clustering. However to exploit these projections, artifacts and interpretation issues must be overcome. We present ProxiLens, a semantic lens which helps exploring data interactively. The analyst becomes aware of the artifacts navigating in a continuous way through the 2D projection in order to cluster and analyze data. We demonstrate the applicability of our technique for visual clustering on synthetic and real data sets.
Fichier principal
Vignette du fichier
proxilens.pdf (916.83 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01523025 , version 1 (31-05-2017)
hal-01523025 , version 2 (08-10-2017)

Identifiers

Cite

Nicolas Heulot, Michael Aupetit, Jean-Daniel Fekete. ProxiLens: Interactive Exploration of High-Dimensional Data using Projections. VAMP: EuroVis Workshop on Visual Analytics using Multidimensional Projections, Michael Aupetit; Laurens van der Maaten, Jun 2013, Leipzig, Germany. ⟨10.2312/PE.VAMP.VAMP2013.011-015⟩. ⟨hal-01523025v2⟩
513 View
360 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More