A posteriori stopping criteria for optimized Schwarz domain decomposition algorithms in mixed formulations

Abstract : This paper develops a posteriori estimates for domain decomposition methods with optimized Robin transmission conditions on the interface between subdomains. We choose to demonstrate the methodology for mixed formulations, with a lowest-order Raviart–Thomas–Nédélec discretization, often used for heterogeneous and anisotropic porous media diffusion problems. Our estimators allow to distinguish the spatial discretization and the domain decomposition error components. We propose an adaptive domain decomposition algorithm wherein the iterations are stopped when the domain decomposition error does not affect significantly the overall error. Two main goals are thus achieved. First, a guaranteed bound on the overall error is obtained at each step of the domain decomposition algorithm. Second, important savings in terms of the number of domain decomposition iterations can be realized. Numerical experiments illustrate the efficiency of our estimates and the performance of the adaptive stopping criteria.
Type de document :
Article dans une revue
Computational Methods in Applied Mathematics, De Gruyter, In press
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01529532
Contributeur : Martin Vohralik <>
Soumis le : mercredi 7 février 2018 - 14:41:19
Dernière modification le : vendredi 20 avril 2018 - 01:22:16

Fichier

DD_MFE.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01529532, version 2

Citation

Sarah Ali Hassan, Caroline Japhet, Michel Kern, Martin Vohralík. A posteriori stopping criteria for optimized Schwarz domain decomposition algorithms in mixed formulations. Computational Methods in Applied Mathematics, De Gruyter, In press. 〈hal-01529532v2〉

Partager

Métriques

Consultations de la notice

164

Téléchargements de fichiers

23