Learning Embeddings to lexicalise RDF Properties

Abstract : A difficult task when generating text from knowledge bases (KB) consists in finding appropriate lexicalisations for KB symbols. We present an approach for lexicalis-ing knowledge base relations and apply it to DBPedia data. Our model learns low-dimensional embeddings of words and RDF resources and uses these representations to score RDF properties against candidate lexicalisations. Training our model using (i) pairs of RDF triples and automatically generated verbalisations of these triples and (ii) pairs of paraphrases extracted from various resources, yields competitive results on DBPedia data.
Type de document :
Communication dans un congrès
*SEM 2016,. The Fifth Joint Conference on Lexical and Computational Semantics., Aug 2016, Berlin, Germany. pp.219 - 228, 2016, 〈10.18653/v1/S16-2027〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01623812
Contributeur : Claire Gardent <>
Soumis le : mercredi 25 octobre 2017 - 16:49:08
Dernière modification le : jeudi 11 janvier 2018 - 06:23:43

Fichier

starsem2016.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Laura Perez-Beltrachini, Claire Gardent. Learning Embeddings to lexicalise RDF Properties. *SEM 2016,. The Fifth Joint Conference on Lexical and Computational Semantics., Aug 2016, Berlin, Germany. pp.219 - 228, 2016, 〈10.18653/v1/S16-2027〉. 〈hal-01623812〉

Partager

Métriques

Consultations de la notice

35

Téléchargements de fichiers

10