Front shape similarity measure for shape-oriented sensitivity analysis and data assimilation for Eikonal equation

Abstract : We present a shape-oriented data assimilation strategy suitable for front-tracking problems through the example of wildfire. The concept of " front " is used to model, at regional scales, the burning area delimitation that moves, undergoes shape and topological changes under heterogeneous orography, biomass fuel and micrometeorology. The simulation-observation discrepancies are represented using a front shape similarity measure deriving from image processing and based on the Chan-Vese contour fitting functional. We show that consistent corrections of the front location and uncertain physical parameters can be obtained using this measure applied on a level-set fire growth model solving for an eikonal equation. This study involves a Luenberger observer for state estimation, including a topological gradient term to track multiple fronts, and of a reduced-order Kalman filter for joint parameter estimation. We also highlight the need – prior to parameter estimation – for sensitivity analysis based on the same discrepancy measure, and for instance using polynomial chaos metamodels, to ensure a meaningful inverse solution is achieved. The performance of the shape-oriented data assimilation strategy is assessed on a synthetic configuration subject to uncertainties in front initial position, near-surface wind magnitude and direction. The use of a robust front shape similarity measure paves the way toward the direct assimilation of infrared images and is a valuable asset in the perspective of data-driven wildfire modeling.
Type de document :
Article dans une revue
ESAIM: Proceedings and Surveys, EDP Sciences, In press, pp.1-22
Liste complète des métadonnées

Littérature citée [64 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01625575
Contributeur : Philippe Moireau <>
Soumis le : vendredi 27 octobre 2017 - 17:53:39
Dernière modification le : mardi 29 mai 2018 - 12:50:54
Document(s) archivé(s) le : dimanche 28 janvier 2018 - 16:17:58

Fichier

ESAIM17_review.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01625575, version 1

Citation

Mélanie Rochoux, Annabelle Collin, Cong Zhang, Arnaud Trouvé, Didier Lucor, et al.. Front shape similarity measure for shape-oriented sensitivity analysis and data assimilation for Eikonal equation. ESAIM: Proceedings and Surveys, EDP Sciences, In press, pp.1-22. 〈hal-01625575〉

Partager

Métriques

Consultations de la notice

517

Téléchargements de fichiers

148