Electrostatic Approximation of Vector Fields

Abstract : This paper provides expressions for the boundary potential that provides the best electrostatic potential approximation of a given $$L^2$$ vector field on a nice bounded region in $${\mathbb R}^N$$. The permittivity of the region is assumed to be known and the potential is required to be zero on the conducting part of the boundary. The boundary potential is found by solving the minimization conditions and using a special basis of the trace space for the space of allowable potentials. The trace space is identified by its representation with respect to a basis of $$\varSigma $$-Steklov eigenfunctions.
Type de document :
Communication dans un congrès
Lorena Bociu; Jean-Antoine Désidéri; Abderrahmane Habbal. 27th IFIP Conference on System Modeling and Optimization (CSMO), Jun 2015, Sophia Antipolis, France. Springer International Publishing, IFIP Advances in Information and Communication Technology, AICT-494, pp.89-94, 2016, System Modeling and Optimization. 〈10.1007/978-3-319-55795-3_7〉
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01626889
Contributeur : Hal Ifip <>
Soumis le : mardi 31 octobre 2017 - 14:40:17
Dernière modification le : mardi 31 octobre 2017 - 14:45:03
Document(s) archivé(s) le : jeudi 1 février 2018 - 13:18:38

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Giles Auchmuty. Electrostatic Approximation of Vector Fields. Lorena Bociu; Jean-Antoine Désidéri; Abderrahmane Habbal. 27th IFIP Conference on System Modeling and Optimization (CSMO), Jun 2015, Sophia Antipolis, France. Springer International Publishing, IFIP Advances in Information and Communication Technology, AICT-494, pp.89-94, 2016, System Modeling and Optimization. 〈10.1007/978-3-319-55795-3_7〉. 〈hal-01626889〉

Partager

Métriques

Consultations de la notice

41