FFT extension for algebraic-group factorization algorithms

Abstract : It is well known that the second stage of factoring methods that exploit smoothness of group orders can be implemented efficiently using the fast Fourier transform (FFT). For Pollard's p−1 method [17] this originated with the Mont-gomery and Silverman paper [16], and for the elliptic curve factoring method [12] it was the subject of Peter Montgomery's PhD dissertation [14]. Along with Peter's most recent work on this subject [15], these developments are presented in this chapter.
Type de document :
Chapitre d'ouvrage
Joppe W. Bos; Arjen K. Lenstra. Topics in Computational Number Theory Inspired by Peter L. Montgomery, Cambridge University Press, pp.189-205, 2017, 978-1-107-10935-3
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01630907
Contributeur : Paul Zimmermann <>
Soumis le : jeudi 9 novembre 2017 - 12:01:42
Dernière modification le : jeudi 11 janvier 2018 - 06:27:51

Fichier

Chap8.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : hal-01630907, version 1

Collections

Citation

Richard Brent, Alexander Kruppa, Paul Zimmermann. FFT extension for algebraic-group factorization algorithms. Joppe W. Bos; Arjen K. Lenstra. Topics in Computational Number Theory Inspired by Peter L. Montgomery, Cambridge University Press, pp.189-205, 2017, 978-1-107-10935-3. 〈hal-01630907〉

Partager

Métriques

Consultations de la notice

85

Téléchargements de fichiers

19