Predicting Transcription Factor Binding Sites with Convolutional Kernel Networks

Abstract : The growing amount of biological sequences available makes it possible to learn genotype-phenotype relationships from data with increasingly high accuracy. By exploiting large sets of sequences with known phenotypes, machine learning methods can be used to build functions that predict the phenotype of new, unannotated sequences. In particular, deep neural networks have recently obtained good performances on such prediction tasks, but are notoriously difficult to analyze or interpret. Here, we introduce a hybrid approach between kernel methods and convolutional neural networks for sequences, which retains the ability of neural networks to learn good representations for a learning problem at hand, while defining a well characterized Hilbert space to describe prediction functions. Our method outperforms state-of-the-art convolutional neural networks on a transcription factor binding prediction task while being much faster to train and yielding more stable and interpretable results. Source code is freely available at
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger
Contributeur : Julien Mairal <>
Soumis le : vendredi 10 novembre 2017 - 17:16:49
Dernière modification le : jeudi 28 juin 2018 - 14:36:34
Document(s) archivé(s) le : dimanche 11 février 2018 - 14:22:16


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01632912, version 1


Dexiong Chen, Laurent Jacob, Julien Mairal. Predicting Transcription Factor Binding Sites with Convolutional Kernel Networks. 2017. 〈hal-01632912〉



Consultations de la notice


Téléchargements de fichiers