On a Wasserstein-type distance between solutions to stochastic differential equations

Jocelyne Bion-Nadal 1 Denis Talay 2
2 TOSCA - TO Simulate and CAlibrate stochastic models
CRISAM - Inria Sophia Antipolis - Méditerranée , IECL - Institut Élie Cartan de Lorraine : UMR7502
Abstract : In this paper we introduce a Wasserstein-type distance on the set of the probability distributions of strong solutions to stochastic differential equations. This new distance is defined by restricting the set of possible coupling measures. We prove that it may also be defined by means of the value function of a stochastic control problem whose Hamilton–Jacobi– Bellman equation has a smooth solution, which allows one to deduce a priori estimates or to obtain numerical evaluations. We exhibit an optimal coupling measure and characterizes it as a weak solution to an explicit stochastic differential equation, and we finally describe procedures to approximate this optimal coupling measure. A notable application concerns the following modeling issue: given an exact diffusion model, how to select a simplified diffusion model within a class of admissible models under the constraint that the probability distribution of the exact model is preserved as much as possible?
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

Contributeur : Denis Talay <>
Soumis le : mardi 5 juin 2018 - 11:05:21
Dernière modification le : mercredi 23 janvier 2019 - 10:29:27
Document(s) archivé(s) le : jeudi 6 septembre 2018 - 13:50:54


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01636082, version 2


Jocelyne Bion-Nadal, Denis Talay. On a Wasserstein-type distance between solutions to stochastic differential equations. 2018. 〈hal-01636082v2〉



Consultations de la notice


Téléchargements de fichiers