A Framework for Safety-Critical Process Management in Engineering Projects

Abstract : Complex technical systems, industrial systems or infrastructure systems are rich of customizable features and raise high demands on quality and safety-critical aspects. To create complete, valid and reliable planning and customization process data for a product deployment, an overarching engineering process is crucial for the successful completion of a project. In this paper, we introduce a framework for process management in complex engineering projects which are subject to a large amount of constraints and make use of heterogeneous data sources. In addition, we propose solutions for the framework components and describe a proof-of-concept implementation of the framework as an extension of a well-known BPMS.
Type de document :
Communication dans un congrès
Paolo Ceravolo; Stefanie Rinderle-Ma. 5th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Dec 2015, Vienna, Austria. Springer International Publishing, Lecture Notes in Business Information Processing, LNBIP-244, pp.1-27, 2017, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-319-53435-0_1〉
Liste complète des métadonnées

Littérature citée [54 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01651893
Contributeur : Hal Ifip <>
Soumis le : mercredi 29 novembre 2017 - 16:06:55
Dernière modification le : mercredi 29 novembre 2017 - 16:34:48

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Saimir Bala, Cristina Cabanillas, Alois Haselböck, Giray Havur, Jan Mendling, et al.. A Framework for Safety-Critical Process Management in Engineering Projects. Paolo Ceravolo; Stefanie Rinderle-Ma. 5th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Dec 2015, Vienna, Austria. Springer International Publishing, Lecture Notes in Business Information Processing, LNBIP-244, pp.1-27, 2017, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-319-53435-0_1〉. 〈hal-01651893〉

Partager

Métriques

Consultations de la notice

82