Skip to Main content Skip to Navigation
Journal articles

Coherent oscillations inside a quantum manifold stabilized by dissipation

Steven Touzard 1 Alexander Grimm 1 Zaki Leghtas 1, 2 Shantanu O. Mundhada 1 Philip Reinhold 1 Christopher Axline 1 Matt Reagor 1 Kevin Chou 1 Jacob Blumoff 1 Katrina M. Sliwa 1 Shyam Shankar 1 Luigi Frunzio 1 Robert J. Schoelkopf 1 Mazyar Mirrahimi 2 Michel H. Devoret 1
2 QUANTIC - QUANTum Information Circuits
ENS Paris - École normale supérieure - Paris, MINES ParisTech - École nationale supérieure des mines de Paris, SU - Sorbonne Université, Inria de Paris
Abstract : Manipulating the state of a logical quantum bit usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schroedinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase-flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.
Document type :
Journal articles
Complete list of metadatas
Contributor : Mazyar Mirrahimi <>
Submitted on : Thursday, November 30, 2017 - 4:30:35 PM
Last modification on : Thursday, September 24, 2020 - 4:46:02 PM

Links full text



Steven Touzard, Alexander Grimm, Zaki Leghtas, Shantanu O. Mundhada, Philip Reinhold, et al.. Coherent oscillations inside a quantum manifold stabilized by dissipation. Physical Review X, American Physical Society, 2018, ⟨10.1103/PhysRevX.8.021005⟩. ⟨hal-01652771⟩



Record views