Efficient decoding of random errors for quantum expander codes

Abstract : We show that quantum expander codes, a constant-rate family of quantum LDPC codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Z\'emor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottesman's construction of fault tolerant schemes with constant space overhead. In order to obtain this result, we study a notion of α-percolation: for a random subset W of vertices of a given graph, we consider the size of the largest connected α-subset of W, where X is an α-subset of W if |X∩W|≥α|X|.
Type de document :
Communication dans un congrès
Conference on ”Quantum Information Theory”, Dec 2017, Paris, France. pp.1-33
Liste complète des métadonnées

https://hal.inria.fr/hal-01656427
Contributeur : Anthony Leverrier <>
Soumis le : lundi 11 décembre 2017 - 14:54:12
Dernière modification le : jeudi 26 avril 2018 - 10:27:54

Identifiants

  • HAL Id : hal-01656427, version 1

Collections

Citation

Anthony Leverrier. Efficient decoding of random errors for quantum expander codes. Conference on ”Quantum Information Theory”, Dec 2017, Paris, France. pp.1-33. 〈hal-01656427〉

Partager

Métriques

Consultations de la notice

75

Téléchargements de fichiers

25