Learning-Contextual Variability Models - Archive ouverte HAL Access content directly
Journal Articles IEEE Software Year : 2017

Learning-Contextual Variability Models

(1, 2, 3) , (2, 1, 3) , (2, 1, 3) , (2, 1, 3)
1
2
3

Abstract

Modeling how contextual factors relate to a software system’s configuration space is usually a manual, error-prone task that depends highly on expert knowledge. Machine-learning techniques can automatically predict the acceptable software configurations for a given context. Such an approach executes and observes a sample of software configurations within a sample of contexts. It then learns what factors of each context will likely discard or activate some of the software’s features. This lets developers and product managers automatically extract the rules that specialize highly configurable systems for specific contexts.
Fichier principal
Vignette du fichier
Learning_Contextual_Variability_Models.pdf (1.12 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01659137 , version 1 (20-12-2017)

Identifiers

Cite

Paul Temple, Mathieu Acher, Jean-Marc Jézéquel, Olivier Barais. Learning-Contextual Variability Models. IEEE Software, 2017, 34 (6), pp.64-70. ⟨10.1109/MS.2017.4121211⟩. ⟨hal-01659137⟩
274 View
325 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More