Linearized Active Circuits: Transfer Functions and Stability

Laurent Baratchart 1 Sylvain Chevillard 2 Adam Cooman 3 Martine Olivi 1 Fabien Seyfert 1
2 CARAMEL - Cryptology, Arithmetic: Hardware and Software
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : We develop a theoretical framework for local stability analysis of active microwave circuits around an equilibrium. We first characterize linearized (partial) transfer functions of ideal circuits around such an equilibrium, and show they can be unstable even though there are no unstable poles. Next, we consider linearized transfer functions of realistic circuits, comprising components which are passive at sufficiently high frequency. We establish that such realistic transfer functions are stable if and only if they have no poles in the closed right half-plane, and that there are at most finitely many such poles. This suggests that anti-analytic projection-based methods and meromorphic approximation techniques in Hardy spaces should be helpful to check for stability.
Type de document :
Pré-publication, Document de travail
Preprint submitted to Automatica. 2017
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger
Contributeur : Martine Olivi <>
Soumis le : mercredi 20 décembre 2017 - 18:52:32
Dernière modification le : mardi 17 avril 2018 - 09:04:13


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01667606, version 1


Laurent Baratchart, Sylvain Chevillard, Adam Cooman, Martine Olivi, Fabien Seyfert. Linearized Active Circuits: Transfer Functions and Stability. Preprint submitted to Automatica. 2017. 〈hal-01667606〉



Consultations de la notice


Téléchargements de fichiers