Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights - Archive ouverte HAL Access content directly
Journal Articles SIAM Journal on Scientific Computing Year : 2018

Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights

(1) , (2)
1
2

Abstract

We describe a strategy for rigorous arbitrary-precision evaluation of Legendre polynomials on the unit interval and its application in the generation of Gauss-Legendre quadrature rules. Our focus is on making the evaluation practical for a wide range of realistic parameters, corresponding to the requirements of numerical integration to an accuracy of about 100 to 100 000 bits. Our algorithm combines the summation by rectangular splitting of several types of expansions in terms of hypergeometric series with a fixed-point implementation of Bonnet's three-term recurrence relation. We then compute rigorous enclosures of the Gauss-Legendre nodes and weights using the interval Newton method. We provide rigorous error bounds for all steps of the algorithm. The approach is validated by an implementation in the Arb library, which achieves order-of-magnitude speedups over previous code for computing Gauss-Legendre rules with simultaneous high degree and precision.
Fichier principal
Vignette du fichier
legendre.pdf (734.85 Ko) Télécharger le fichier
Vignette du fichier
benchplot.pdf (135.38 Ko) Télécharger le fichier
Vignette du fichier
timeplot.pdf (73.07 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01705612 , version 1 (09-02-2018)
hal-01705612 , version 2 (16-10-2018)

Identifiers

Cite

Fredrik Johansson, Marc Mezzarobba. Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights. SIAM Journal on Scientific Computing, 2018, 40 (6), pp.C726-C747. ⟨10.1137/18M1170133⟩. ⟨hal-01705612v2⟩
562 View
618 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More