Skip to Main content Skip to Navigation
Journal articles

A domain decomposition method for linearized Boussinesq-type equations

Abstract : In this paper, we derive discrete transparent boundary conditions for a class of linearized Boussinesq equations. These conditions happen to be non-local in time and we test numerically their accuracy with a Crank-Nicolson time-discretization on a staggered grid. We use the derived transparent boundary conditions as interface conditions in a domain decomposition method, where they become local in time. We analyze numerically their efficiency thanks to comparisons made with other interface conditions.
Document type :
Journal articles
Complete list of metadatas

Cited literature [17 references]  Display  Hide  Download
Contributor : Gaspard Kemlin <>
Submitted on : Tuesday, May 22, 2018 - 6:18:58 PM
Last modification on : Thursday, August 13, 2020 - 11:26:01 AM
Long-term archiving on: : Tuesday, September 25, 2018 - 8:10:45 PM


Files produced by the author(s)


  • HAL Id : hal-01797823, version 1


Joao Guilherme Caldas Steinstraesser, Gaspard Kemlin, Antoine Rousseau. A domain decomposition method for linearized Boussinesq-type equations. Journal of Mathematical Study, Global Science Press, 2019, 52 (3), pp.320--340. ⟨hal-01797823v1⟩



Record views


Files downloads


Données de recherche