Recursive Linear Continuous Quaternion Attitude Estimator From Vector Observations - Archive ouverte HAL Access content directly
Journal Articles IET Radar Sonar and Navigation Year : 2018

Recursive Linear Continuous Quaternion Attitude Estimator From Vector Observations

(1) , (1) , (2) , (3)
1
2
3

Abstract

Attitude estimation from vector observations is widely employed in aerospace applications for accurate integrated navigation using solutions to Wahba's problem. Wahba's solutions are practical but may corrupt facing critical cases in the presence of almost collinear reference vector measurements, which is inevitable in robotic applications with redundant sensor arrays or platforms with celestial vision sensors in similar directions. Different from existing algorithms, this paper presents a novel sequential multiplicative quaternion attitude estimation method from various vector sensor outputs. The unique linear constitution of the algorithm leads to its specific name of Recursive Linear Quaternion Estimator (RLQE). The algorithm's architecture is designed to use each single pair of vector observation linearly so that the vector observations can be arbitrarily chosen and fused. The closed-form covariance of the RLQE is derived that builds up the existence of a highly reliable RLQE Kalman filter (RLQE-KF). Simulations and experiments are carried out to give the performances of our algorithm and representative ones. Compared with other works, the proposed RLQE maintains good precision, better consistency and lower variance bounds. Moreover, the attitude estimation performance with critical cases is especially much better than conventional Wahba's solution on its continuity, accuracy and variance.
Fichier principal
Vignette du fichier
version HAL.pdf (2.18 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01923022 , version 1 (14-11-2018)

Identifiers

Cite

Jin Wu, Zebo Zhou, Hassen Fourati, Ming Liu. Recursive Linear Continuous Quaternion Attitude Estimator From Vector Observations. IET Radar Sonar and Navigation, 2018, 12 (11), pp.1696-1207. ⟨10.1049/iet-rsn.2018.5028⟩. ⟨hal-01923022⟩
84 View
287 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More