Toward privacy in IoT mobile devices for activity recognition

Théo Jourdan 1 Antoine Boutet 2 Carole Frindel 3
2 PRIVATICS - Privacy Models, Architectures and Tools for the Information Society
Inria Grenoble - Rhône-Alpes, CITI - CITI Centre of Innovation in Telecommunications and Integration of services
3 Images et Modèles
CREATIS - Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé
Abstract : Recent advances in wireless sensors for personal healthcare allow to recognise human real-time activities with mobile devices. While the analysis of those datastreamcanhavemanybenefitsfromahealthpointofview,itcanalsoleadtoprivacy threats by exposing highly sensitive information. In this paper, we propose a privacy-preserving framework for activity recognition. This framework relies on a machine learning technique to efficiently recognise the user activity pattern, useful for personal healthcare monitoring, while limiting the risk of re-identification of users from biometric patterns that characterizes each individual. To achieve that, we rely on a carefully features extraction scheme in both temporal and frequency domainandapplyageneralisation-basedapproachonfeaturesleadingtore-identify users. We extensively evaluate our framework with a reference dataset: results show an accurate activity recognition (87%) while limiting the re-identifation rate (33%). This represents a slightly decrease of utility (9%) against a large privacy improvement (53%) compared to state-of-the-art baselines.
Type de document :
Communication dans un congrès
Privacy Preserving Machine Learning NeurIPS 2018 Workshop, Dec 2018, Montréal, Canada. pp.1-6
Liste complète des métadonnées

https://hal.inria.fr/hal-01941453
Contributeur : Théo Jourdan <>
Soumis le : mardi 4 décembre 2018 - 14:38:37
Dernière modification le : jeudi 20 décembre 2018 - 09:42:04

Fichier

ppml.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01941453, version 1

Citation

Théo Jourdan, Antoine Boutet, Carole Frindel. Toward privacy in IoT mobile devices for activity recognition. Privacy Preserving Machine Learning NeurIPS 2018 Workshop, Dec 2018, Montréal, Canada. pp.1-6. 〈hal-01941453〉

Partager

Métriques

Consultations de la notice

66

Téléchargements de fichiers

15