Analyse de performances de schémas à pas de temps locaux pour la simulation numérique de phénomènes de propagations d'ondes

Rose-Cloé Meyer 1
1 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
Abstract : The efficiency of numerical simulation of wave propagation is highly dependent of the quality of the mesh. For complex simulations, the size of the cells in the mesh can strongly vary, either because of the geometry or because of the different propagation celerity of the waves. To ensure stability, explicit numerical schemes must match with the CFL conditions of every cells of the mesh. When significant disparities appear in the domain, the time step used on big cells is not optimal, which can cause heavy calculation cost and result in a loss of efficiency. To improve the performance of the programs, local time-stepping methods based on a spatial Discontinuous Galerkin discretization have been implemented. This document presents the comparison between three local time-stepping methods: a conservative method, a recursive method, and an asynchron method. The two first methods use local time steps that are fractions of the global time step, while the third method can use independent time steps on each cell of the mesh. The accuracy of the solution, the computation cost and the speedup of local-time stepping are presented on cases in two and three dimensions on configurations as fine slot or domains with geometric singularities.
Document type :
Master thesis
Complete list of metadatas

https://hal.inria.fr/hal-01942769
Contributor : Rose-Cloé Meyer <>
Submitted on : Monday, December 3, 2018 - 3:23:59 PM
Last modification on : Tuesday, April 9, 2019 - 2:22:11 PM
Long-term archiving on : Monday, March 4, 2019 - 1:56:40 PM

File

rapport_meyer_rose-cloe.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01942769, version 1

Citation

Rose-Cloé Meyer. Analyse de performances de schémas à pas de temps locaux pour la simulation numérique de phénomènes de propagations d'ondes. Equations aux dérivées partielles [math.AP]. 2018. ⟨hal-01942769⟩

Share

Metrics

Record views

30

Files downloads

216