A note on the quantum query complexity of permutation symmetric functions
Abstract
It is known since the work of [AA14] that for any permutation symmetric function $f$, the quantum query complexity is at most polynomially smaller than the classical randomized query complexity, more precisely that $R(f) = \widetilde{O}\left(Q^7(f)\right)$. In this paper, we improve this result and show that $R(f) = {O}\left(Q^3(f)\right)$ for a more general class of symmetric functions. Our proof is constructive and relies largely on the quantum hardness of distinguishing a random permutation from a random function with small range from Zhandry [Zha15].
Origin : Files produced by the author(s)
Loading...