Optimal control of slow-fast mechanical systems

Abstract : We consider the minimum time control of dynamical systems with slow and fast state variables. With applications to perturbations of integrable systems in mind, we focus on the case of problems with one or more fast angles, together with a small drift on the slow part modelling a so-called secular evolution of the slow variables. According to Pontrjagin maximum principle, minimizing trajectories are projections on the state space of Hamiltonian curves. In the case of a single fast angle, it turns out that, provided 9 the drift on the slow part of the original system is small enough, time minimizing trajectories can be approximated by geodesics of a suitable metric. 11 As an application to space mechanics, the effect of the J2 term in the Earth potential on the control of a spacecraft is considered. In ongoing work, we 13 also address the more involved question of systems having two fast angles.
Document type :
Conference papers
Complete list of metadatas

https://hal.inria.fr/hal-01953337
Contributor : Jean-Baptiste Caillau <>
Submitted on : Wednesday, December 12, 2018 - 6:35:15 PM
Last modification on : Friday, April 19, 2019 - 2:26:16 PM
Long-term archiving on : Wednesday, March 13, 2019 - 3:46:48 PM

File

uca-complex-2018.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01953337, version 1

Citation

Jean-Baptiste Caillau, Lamberto Dell'Elce, Jean-Baptiste Pomet, Jérémy Rouot. Optimal control of slow-fast mechanical systems. Proceedings of the Complex Systems Academy of Excellence, 2018, Nice, France. pp.105-116. ⟨hal-01953337⟩

Share

Metrics

Record views

69

Files downloads

27