Skip to Main content Skip to Navigation
New interface
Journal articles

Profiles of upcoming HPC Applications and their Impact on Reservation Strategies

Abstract : With the expected convergence between HPC, BigData and AI, new applications with different profiles are coming to HPC infrastructures. We aim at better understanding the features and needs of these applications in order to be able to run them efficiently on HPC platforms. The approach followed is bottom-up: we study thoroughly an emerging application, Spatially Localized Atlas Network Tiles (SLANT, originating from the neuroscience community) to understand its behavior. Based on these observations, we derive a generic, yet simple, application model (namely, a linear sequence of stochastic jobs). We expect this model to be representative for a large set of upcoming applications from emerging fields that start to require the computational power of HPC clusters without fitting the typical behavior of large-scale traditional applications. In a second step, we show how one can use this generic model in a scheduling framework. Specifically we consider the problem of making reservations (both time and memory) for an execution on an HPC platform based on the application expected resource requirements. We derive solutions using the model provided by the first step of this work. We experimentally show the robustness of the model, even with very few data points or using another application, to generate the model, and provide performance gains with regards to standard and more recent approaches used in the neuroscience community.
Complete list of metadata

Cited literature [50 references]  Display  Hide  Download
Contributor : Valentin Honoré Connect in order to contact the contributor
Submitted on : Tuesday, November 17, 2020 - 6:30:33 PM
Last modification on : Friday, November 18, 2022 - 9:23:08 AM
Long-term archiving on: : Thursday, February 18, 2021 - 8:24:16 PM


Files produced by the author(s)




Ana Gainaru, Brice Goglin, Valentin Honoré, Guillaume Pallez. Profiles of upcoming HPC Applications and their Impact on Reservation Strategies. IEEE Transactions on Parallel and Distributed Systems, 2021, 32 (5), pp.1178-1190. ⟨10.1109/TPDS.2020.3039728⟩. ⟨hal-03010676⟩



Record views


Files downloads