Skip to Main content Skip to Navigation
Conference papers

Gradient-free Online Learning in Games with Delayed Rewards

Abstract : Motivated by applications to online advertising and recommender systems, we consider a gametheoretic model with delayed rewards and asynchronous, payoff-based feedback. In contrast to previous work on delayed multi-armed bandits, we focus on multi-player games with continuous action spaces, and we examine the long-run behavior of strategic agents that follow a no-regret learning policy (but are otherwise oblivious to the game being played, the objectives of their opponents, etc.). To account for the lack of a consistent stream of information (for instance, rewards can arrive out of order, with an a priori unbounded delay, etc.), we introduce a gradient-free learning policy where payoff information is placed in a priority queue as it arrives. In this general context, we derive new bounds for the agents' regret; furthermore, under a standard diagonal concavity assumption, we show that the induced sequence of play converges to Nash equilibrium (NE) with probability 1, even if the delay between choosing an action and receiving the corresponding reward is unbounded.
Document type :
Conference papers
Complete list of metadatas
Contributor : Panayotis Mertikopoulos <>
Submitted on : Monday, December 7, 2020 - 2:02:05 PM
Last modification on : Wednesday, December 16, 2020 - 4:08:42 AM


Files produced by the author(s)


  • HAL Id : hal-03043703, version 1


Amélie Héliou, Panayotis Mertikopoulos, Zhengyuan Zhou. Gradient-free Online Learning in Games with Delayed Rewards. ICML '20: The 37th International Conference on Machine Learning, 2020, Vienna, Austria. ⟨hal-03043703⟩



Record views


Files downloads