Clustering Multidimensional Extended Objects to Speed Up Execution of Spatial Queries

Cristian-Augustin Saita 1 François Llirbat 2
1 SMIS - Secured and Mobile Information Systems
PRISM - Parallélisme, Réseaux, Systèmes, Modélisation, UVSQ - Université de Versailles Saint-Quentin-en-Yvelines, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8144
Abstract : We present a cost-based adaptive clustering method to improve average performance of spatial queries (intersection, containment, enclosure queries) over large collections of multidimensional extended objects (hyper-intervals or hyper-rectangles). Our object clustering strategy is based on a cost model taking into account the spatial object distribution, the query distribution, and a set of database and system parameters affecting the query performance : object size, access time, transfer and verification costs. We also employ a new grouping criterion to group objects in clusters, more efficient than traditional approaches based on minimum bounding in all dimensions. Our cost model is flexible and can accommodate different storage scenarios : in-memory or disk-based. Experimental evaluations show that our approach is efficient in a number of situations involving large spatial databases with many dimensions.
Type de document :
Communication dans un congrès
Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis, Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, Elena Ferrari. International Conference on Extending Database Technology (EDBT), 2004, Heraklion, Crete, Springer, 2992, pp.403-421, 2004, Lecture Notes in Computer Science. 〈10.1007/b95855〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00000440
Contributeur : Luc Bouganim <>
Soumis le : mercredi 21 juin 2006 - 23:57:14
Dernière modification le : vendredi 25 mai 2018 - 12:02:04
Document(s) archivé(s) le : lundi 20 septembre 2010 - 16:03:06

Fichier

Identifiants

Collections

Citation

Cristian-Augustin Saita, François Llirbat. Clustering Multidimensional Extended Objects to Speed Up Execution of Spatial Queries. Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis, Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, Elena Ferrari. International Conference on Extending Database Technology (EDBT), 2004, Heraklion, Crete, Springer, 2992, pp.403-421, 2004, Lecture Notes in Computer Science. 〈10.1007/b95855〉. 〈inria-00000440v2〉

Partager

Métriques

Consultations de la notice

246

Téléchargements de fichiers

92