Fast genus 2 arithmetic based on Theta functions

Pierrick Gaudry 1, 2
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France
2 CACAO - Curves, Algebra, Computer Arithmetic, and so On
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In 1986, D. V. Chudnovsky and G. V. Chudnovsky proposed to use formulae coming from Theta functions for the arithmetic in Jacobians of genus 2 curves. We follow this idea and derive fast formulae for the scalar multiplication in the Kummer surface associated to a genus 2 curve, using a Montgomery ladder. Our formulae can be used to design very efficient genus 2 cryptosystems that should be faster than elliptic curve cryptosystems in some hardware configurations.
Document type :
Journal articles
Complete list of metadatas

Cited literature [17 references]  Display  Hide  Download

https://hal.inria.fr/inria-00000625
Contributor : Pierrick Gaudry <>
Submitted on : Monday, August 20, 2007 - 10:45:58 AM
Last modification on : Wednesday, March 27, 2019 - 4:41:29 PM
Long-term archiving on: Monday, October 22, 2012 - 12:10:51 PM

File

arithKsurf.pdf
Explicit agreement for this submission

Identifiers

Collections

Citation

Pierrick Gaudry. Fast genus 2 arithmetic based on Theta functions. Journal of Mathematical Cryptology, De Gruyter, 2007, 1 (3), pp.243-265. ⟨10.1515/JMC.2007.012⟩. ⟨inria-00000625v2⟩

Share

Metrics

Record views

578

Files downloads

597