On Integer Chebyshev Polynomials

Laurent Habsieger Bruno Salvy 1
1 ALGO - Algorithms
Inria Paris-Rocquencourt
Abstract : We are concerned with the problem of minimizing the supremum norm on [0,1] of a nonzero polynomial of degree at most $n$ with integer coefficients. We use the structure of such polynomials to derive an efficient algorithm for computing them. We give a table of these polynomials for degree up to 75 and use a value from this table to answer an open problem and improve a lower bound from~[3]
Type de document :
Rapport
[Research Report] RR-2648, INRIA. 1995
Liste complète des métadonnées

https://hal.inria.fr/inria-00074042
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:22:29
Dernière modification le : vendredi 25 mai 2018 - 12:02:02
Document(s) archivé(s) le : jeudi 24 mars 2011 - 13:59:32

Fichiers

Identifiants

  • HAL Id : inria-00074042, version 1

Collections

Citation

Laurent Habsieger, Bruno Salvy. On Integer Chebyshev Polynomials. [Research Report] RR-2648, INRIA. 1995. 〈inria-00074042〉

Partager

Métriques

Consultations de la notice

80

Téléchargements de fichiers

204