Generalized resultants over unirational algebraic varieties

Laurent Busé 1 Mohamed Elkadi 1 Bernard Mourrain 1
1 SAGA - Algebraic Systems, Geometry and Applications
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : In this paper, we propose a new method, based on Bezoutian matrices, for computing a nontrivial multiple of the resultant over a projective variety X, which is described on an open subset by a parameterization. This construction, which generalizes the classical and toric one, also applies for instance to blowing up varieties and to residual intersection problems. We recall the classical notion of resultant over a variety X. Then we extend it to varieties which are parameterized on a dense open subset and give new conditions for the existence of the resultant over these varieties. We prove that any maximal nonzero minor of the corresponding Bezoutian matrix yields a nontrivial multiple of the resultant. We end with some experiments.
Type de document :
Article dans une revue
Journal of Symbolic Computation, Elsevier, 2000, J. Symbolic Comput., 29 (4-5), pp.515--526
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00096842
Contributeur : Laurent Busé <>
Soumis le : dimanche 24 septembre 2006 - 13:46:45
Dernière modification le : vendredi 12 janvier 2018 - 11:03:47
Document(s) archivé(s) le : lundi 5 avril 2010 - 23:25:27

Fichiers

Identifiants

  • HAL Id : inria-00096842, version 1

Collections

Citation

Laurent Busé, Mohamed Elkadi, Bernard Mourrain. Generalized resultants over unirational algebraic varieties. Journal of Symbolic Computation, Elsevier, 2000, J. Symbolic Comput., 29 (4-5), pp.515--526. 〈inria-00096842〉

Partager

Métriques

Consultations de la notice

253

Téléchargements de fichiers

155