Abstract : We show that the Delaunay triangulation of a set of points distributed nearly uniformly on a polyhedron (not necessarily convex) of dimension p in d-dimensional space is of order n to the power (d-1)/p for p between 2 and d-1. This improves on the well-known worst-case bound of n to the power ceiling of d/2.
https://hal.inria.fr/inria-00098300 Contributor : Rapport de Recherche InriaConnect in order to contact the contributor Submitted on : Tuesday, September 26, 2006 - 11:12:11 AM Last modification on : Friday, February 4, 2022 - 3:08:56 AM Long-term archiving on: : Monday, September 20, 2010 - 5:02:20 PM