Reconstruction with Voronoi Centered Radial Basis Functions

Abstract : We consider the problem of reconstructing a surface from scattered points sampled on a physical shape. The sampled shape is approximated as the zero level set of a function. This function is defined as a linear combination of compactly supported radial basis functions. We depart from previous work by using as centers of basis functions a set of points located on an estimate of the medial axis, instead of the input data points. Those centers are selected among the vertices of the Voronoi diagram of the sample data points. Being a Voronoi vertex, each center is associated with a maximal empty ball. We use the radius of this ball to adapt the support of each radial basis function. Our method can fit a user-defined budget of centers: The selected subset of Voronoi vertices is filtered using the notion of lambda medial axis, then clustered to fit the allocated budget.
Type de document :
[Research Report] RR-6033, INRIA. 2006, pp.25
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger
Contributeur : Rapport de Recherche Inria <>
Soumis le : mardi 28 novembre 2006 - 11:38:29
Dernière modification le : samedi 27 janvier 2018 - 01:30:41
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 15:21:25


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00116651, version 3



Marie Samozino, Marc Alexa, Pierre Alliez, Mariette Yvinec. Reconstruction with Voronoi Centered Radial Basis Functions. [Research Report] RR-6033, INRIA. 2006, pp.25. 〈inria-00116651v3〉



Consultations de la notice


Téléchargements de fichiers