Quasi-stationary distributions as centrality measures of reducible graphs

Abstract : Random walk can be used as a centrality measure of a directed graph. However, if the graph is reducible the random walk will be absorbed in some subset of nodes and will never visit the rest of the graph. In Google PageRank the problem was solved by introduction of uniform random jumps with some probability. Up to the present, there is no clear criterion for the choice this parameter. We propose to use parameter-free centrality measure which is based on the notion of quasi-stationary distribution. Specifically we suggest four quasi-stationary based centrality measures, analyze them and conclude that they produce approximately the same ranking. The new centrality measures can be applied in spam detection to detect ``link farms'' and in image search to find photo albums.
Type de document :
[Research Report] RR-6263, INRIA. 2007, pp.19
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 8 août 2007 - 10:32:02
Dernière modification le : samedi 27 janvier 2018 - 01:31:43
Document(s) archivé(s) le : mardi 21 septembre 2010 - 13:56:55


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00166333, version 2
  • ARXIV : 0708.0522



Konstantin Avrachenkov, Vivek Borkar, Danil Nemirovsky. Quasi-stationary distributions as centrality measures of reducible graphs. [Research Report] RR-6263, INRIA. 2007, pp.19. 〈inria-00166333v2〉



Consultations de la notice


Téléchargements de fichiers