On the delta-Primitive and Boussinesq Type Equations

Abstract : In this article we consider the Primitive Equations without horizontal viscosity but with a mild vertical viscosity added in the hydrostatic equation, as in [13] and [16], which are the so-called δ−Primitive Equations. We prove that the problem is well posed in the sense of Hadamard in certain types of spaces. This means that we prove the finite-in-time existence, uniqueness and continuous dependence on data for appropriate solutions. The results given in the 3D periodic space easily extend to dimension 2. We also consider a Boussinesq type of equation, meaning that the mild vertical viscosity present in the hydrostatic equation is replaced by the time derivative of the vertical velocity. We prove the same type of results as for the δ−Primitive Equations; periodic boundary conditions are similarly considered.
Type de document :
Article dans une revue
Advances in Differential Equations, Khayyam Publishing, 2005, 10 (5), pp.579-599
Liste complète des métadonnées

Contributeur : Antoine Rousseau <>
Soumis le : lundi 17 septembre 2007 - 13:32:22
Dernière modification le : jeudi 11 janvier 2018 - 06:12:18
Document(s) archivé(s) le : vendredi 9 avril 2010 - 02:17:32


Fichiers éditeurs autorisés sur une archive ouverte


  • HAL Id : inria-00172497, version 1



Madalina Petcu, Antoine Rousseau. On the delta-Primitive and Boussinesq Type Equations. Advances in Differential Equations, Khayyam Publishing, 2005, 10 (5), pp.579-599. 〈inria-00172497〉



Consultations de la notice


Téléchargements de fichiers