Numerical Simulations of the Inviscid Primitive Equations in a Limited Domain

Abstract : This work is dedicated to the numerical computations of the primitive equations (PEs) of the ocean without viscosity with nonlocal (mode by mode) boundary conditions. We consider the 2D nonlinear PEs, and firstly compute the solutions in a "large" rectangular domain D with periodic boundary conditions in the horizontal direction. Then we consider a subdomain D', in which we compute a second numerical solution with transparent boundary conditions. Two objectives are achieved. On the one hand the absence of blow-up in these computations indicates that the PEs without viscosity are well-posed when supplemented with the boundary conditions. On the other hand they show a very good coincidence on the subdomain D' of the two solutions, thus showing also the computational relevance of these new boundary conditions. We end this study with some numerical simulations of the linearized primitive equations, which correspond to the theoretical results established by the authors, and evidence the transparent properties of the boundary conditions.
Liste complète des métadonnées

https://hal.inria.fr/inria-00172561
Contributeur : Antoine Rousseau <>
Soumis le : lundi 17 septembre 2007 - 14:51:37
Dernière modification le : mercredi 11 avril 2018 - 01:53:33
Document(s) archivé(s) le : vendredi 9 avril 2010 - 02:18:06

Fichier

RTT06.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Antoine Rousseau, Roger Temam, Joe Tribbia. Numerical Simulations of the Inviscid Primitive Equations in a Limited Domain. Caterina Calgaro and Jean-François Coulombel and Thierry Goudon. Mathematical Methods for Hydrodynamics, Jun 2005, Lille, France. Birkhäuser, pp.163-181, 2007, 〈10.1007/978-3-7643-7742-7_10〉. 〈inria-00172561〉

Partager

Métriques

Consultations de la notice

435

Téléchargements de fichiers

93