Skip to Main content Skip to Navigation
Reports

Complexity of $(p,1)$-total labelling

Frédéric Havet 1 Stéphan Thomassé 2
1 MASCOTTE - Algorithms, simulation, combinatorics and optimization for telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
2 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : A {\it $(p,1)$-total labelling} of a graph $G=(V,E)$ is a total coloring $L$ from $V\cup E$ into $\{0,\dots ,l\}$ such that $|L(v)-L(e)|\geq p$ whenever an edge $e$ is incident to a vertex $v$. The minimum $l$ for which $G$ admits a $(p,1)$-total labelling is denoted by $\lambda_p(G)$. The case $p=1$ corresponds to the usual notion of total colouring, which is NP-hard to calculate even for cubic bipartite graphs~\cite{MDSA94}. We assume $p\geq 2$ in this paper. It is easy to show that $\lambda_p(G)\geq \Delta +p-1$, where $\Delta$ is the maximum degree of $G$. Moreover, when $G$ is bipartite, $\Delta +p$ is an upper bound for $\lambda_p(G)$, leaving only two possible values. In this paper, we completely settle the computational complexity of deciding whether $\lambda_p(G)$ is equal to $\Delta +p-1$ or to $\Delta +p$ when $G$ is bipartite. This is trivial when $\Delta \leq p$, polynomial when $\Delta =3$ and $p=2$, and NP-complete in the remaining cases.
Document type :
Reports
Complete list of metadata

https://hal.inria.fr/inria-00173438
Contributor : Frederic Havet <>
Submitted on : Wednesday, September 26, 2007 - 1:46:45 PM
Last modification on : Monday, October 12, 2020 - 10:30:20 AM
Long-term archiving on: : Tuesday, September 21, 2010 - 1:21:54 PM

Files

complex-inria.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00173438, version 2

Citation

Frédéric Havet, Stéphan Thomassé. Complexity of $(p,1)$-total labelling. [Research Report] 2007. ⟨inria-00173438v2⟩

Share

Metrics

Record views

11

Files downloads

11