Variational assimilation of Lagrangian Data in Oceanography

Maëlle Nodet 1
1 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Within the framework of the Global Ocean Data Assimilation Experiment, an increasing amount of data is available. A crucial issue for oceanographers is to exploit at best these observations, in order to improve models, climatology, forecasts, etc. A new type of data is now available: positions of floats drifting at depth in the ocean. Unlike other data, mainly Eulerian, these ones are Lagrangian. I will present methods and results about variational assimilation of Lagrangian data.
Type de document :
Communication dans un congrès
SIAM Conference on Applications of Dynamical Systems, May 2007, Snowbird, Utah, United States. 2007
Liste complète des métadonnées

https://hal.inria.fr/inria-00177515
Contributeur : Maëlle Nodet <>
Soumis le : lundi 8 octobre 2007 - 14:23:47
Dernière modification le : mercredi 11 avril 2018 - 01:58:34

Identifiants

  • HAL Id : inria-00177515, version 1

Citation

Maëlle Nodet. Variational assimilation of Lagrangian Data in Oceanography. SIAM Conference on Applications of Dynamical Systems, May 2007, Snowbird, Utah, United States. 2007. 〈inria-00177515〉

Partager

Métriques

Consultations de la notice

302