Homogenization of an elastic media with gaseous inclusions

Abstract : We study the asymptotic behavior of a system modeling a composite material made of an elastic periodically perforated support, with period ε > 0, and a perfect gas placed in each of these perforations, as ε goes to zero. The model we use is linear corresponding to deformations around a reference configuration. We apply both two-scale asymptotic expansion and two-scale convergence methods in order to identify the limit behaviors as ε goes to 0. We state that in the limit, we get a two-scale linear elasticity–like boundary value problem. From this problem, we identify the corresponding homogenized and periodic cell equations which allows us to find the first corrector term. The analysis is performed both in the case of an incompressible and compressible material. We derive some mechanical properties of the limit materials by studying the homogenized coefficients. Finally, we numerically calculate the homogenized coefficients in the incompressible case, for different types of elastic materials.
Type de document :
Article dans une revue
Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Society for Industrial and Applied Mathematics, 2008, 7 (1), pp.33
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00180307
Contributeur : Celine Grandmont <>
Soumis le : jeudi 18 octobre 2007 - 16:46:07
Dernière modification le : jeudi 11 janvier 2018 - 06:21:33
Document(s) archivé(s) le : dimanche 11 avril 2010 - 23:15:18

Fichier

bagrmaos_preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00180307, version 1

Collections

Citation

Léonardo Baffico, Céline Grandmont, Yvon Maday, Axel Osses. Homogenization of an elastic media with gaseous inclusions. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Society for Industrial and Applied Mathematics, 2008, 7 (1), pp.33. 〈inria-00180307〉

Partager

Métriques

Consultations de la notice

318

Téléchargements de fichiers

134