Towards Persistence-Based Reconstruction in Euclidean Spaces

Frédéric Chazal 1 Steve Oudot 1, *
* Auteur correspondant
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Manifold reconstruction has been extensively studied for the last decade or so, especially in two and three dimensions. Recently, significant improvements were made in higher dimensions, leading to new methods to reconstruct large classes of compact subsets of Euclidean space $\R^d$. However, the complexities of these methods scale up exponentially with d, which makes them impractical in medium or high dimensions, even for handling low-dimensional submanifolds. In this paper, we introduce a novel approach that stands in-between classical reconstruction and topological estimation, and whose complexity scales up with the intrinsic dimension of the data. Specifically, when the data points are sufficiently densely sampled from a smooth $m$-submanifold of $\R^d$, our method retrieves the homology of the submanifold in time at most $c(m)n^5$, where $n$ is the size of the input and $c(m)$ is a constant depending solely on $m$. It can also provably well handle a wide range of compact subsets of $\R^d$, though with worse complexities. Along the way to proving the correctness of our algorithm, we obtain new results on \v Cech, Rips, and witness complex filtrations in Euclidean spaces.
Type de document :
Rapport
[Research Report] RR-6391, INRIA. 2008
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00197543
Contributeur : Rapport de Recherche Inria <>
Soumis le : mardi 18 décembre 2007 - 11:20:08
Dernière modification le : vendredi 23 février 2018 - 14:20:08
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 16:58:06

Fichiers

RR-6391.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00197543, version 3
  • ARXIV : 0712.2638

Collections

Citation

Frédéric Chazal, Steve Oudot. Towards Persistence-Based Reconstruction in Euclidean Spaces. [Research Report] RR-6391, INRIA. 2008. 〈inria-00197543v3〉

Partager

Métriques

Consultations de la notice

369

Téléchargements de fichiers

245