Computing omega-limit Sets in Linear Dynamical Systems

Emmanuel Hainry 1
1 CARTE - Theoretical adverse computations, and safety
Inria Nancy - Grand Est, LORIA - FM - Department of Formal Methods
Abstract : Dynamical systems allow to modelize various phenomena or processes by only describing their local behaviour. It is an important matter to study the global and the limit behaviour of such systems. A possible description of this limit behaviour is via the omega-limit set: the set of points that can be limit of subtrajectories. The omega-limit set is in general uncomputable. It can be a set highly difficult to apprehend. Some systems have for example a fractal omega-limit set. However, in some specific cases, this set can be computed. This problem is important to verify properties of dynamical systems, in particular to predict its collapse or its infinite expansion. We prove in this paper that for linear continuous time dynamical systems, it is in fact computable. More, we also prove that the ω-limit set is a semi-algebraic set. The algorithm to compute this set can easily be derived from this proof.
Type de document :
Communication dans un congrès
Calude, Cristian S. and Costa, José Félix and Freund, Rudolf and Oswald, Marion and Rozenberg, Grzegorz. Unconventional Computation, Aug 2008, Vienne, Austria. Springer, 5204, pp.83--95, 2008, Lecture Notes in Computer Science. 〈10.1007/978-3-540-85194-3_9〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00250111
Contributeur : Emmanuel Hainry <>
Soumis le : jeudi 21 août 2008 - 18:50:51
Dernière modification le : vendredi 9 février 2018 - 10:48:03
Document(s) archivé(s) le : samedi 26 novembre 2016 - 01:07:39

Fichiers

omega_hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Emmanuel Hainry. Computing omega-limit Sets in Linear Dynamical Systems. Calude, Cristian S. and Costa, José Félix and Freund, Rudolf and Oswald, Marion and Rozenberg, Grzegorz. Unconventional Computation, Aug 2008, Vienne, Austria. Springer, 5204, pp.83--95, 2008, Lecture Notes in Computer Science. 〈10.1007/978-3-540-85194-3_9〉. 〈inria-00250111v3〉

Partager

Métriques

Consultations de la notice

309

Téléchargements de fichiers

329