A shape optimal design problem with convective and radiative thermal transfer. Analysis and implementation

Abstract : We present a study of an optimal design problem for a coupled system, consisting of a steady-state potential flow equation and a thermal equation taking into account radiative phenomena with multiple reflections. The state equation is a non-linear integro-differential system. We seek to minimize a cost function which depends on the temperature, with respect to the domain of the equations. First, we consider an optimal design problem in an abstract framework and, with the help of the classical adjoint state method, we give an expression of the cost function differential. Then, we apply this result in two spatial dimensions to the non-linear integro-differential system considered. We prove the differentiability of the cost function, we introduce the adjoint state equation, and we give an expression of its exact differential. Then, we discretize the equations by a finite element method and we use a gradient type algorithm to decrease the cost function. We present numerical results as applied to the automotive industry.
Type de document :
Article dans une revue
Journal of Optimization Theory and Applications, Springer Verlag, 2001, 110 (1), pp.75-117
Liste complète des métadonnées

https://hal.inria.fr/inria-00256545
Contributeur : Jerome Monnier <>
Soumis le : vendredi 15 février 2008 - 15:49:31
Dernière modification le : vendredi 12 janvier 2018 - 01:48:43
Document(s) archivé(s) le : jeudi 20 mai 2010 - 18:57:37

Fichier

ChMoVi_JOTA01.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00256545, version 1

Citation

Denise Chenais, Jerome Monnier, Jean-Paul Vila. A shape optimal design problem with convective and radiative thermal transfer. Analysis and implementation. Journal of Optimization Theory and Applications, Springer Verlag, 2001, 110 (1), pp.75-117. 〈inria-00256545〉

Partager

Métriques

Consultations de la notice

372

Téléchargements de fichiers

156